Non-linear Subdivision of Univariate Signals and Discrete Surfaces

نویسنده

  • Nicolas ASPERT
چکیده

During the last 20 years, the joint expansion of computing power, computer graphics, networking capabilities and multiresolution analysis have stimulated several research domains, and developed the need for new types of data such as 3D models, i.e. discrete surfaces. In the intersection between multiresolution analysis and computer graphics, subdivision methods, i.e. iterative refinement procedures of curves or surfaces, have a non-negligible place, since they are a basic component needed to adapt existing multiresolution techniques dedicated to signals and images to more complicated data such as discrete surfaces represented by polygonal meshes. Such representations are of great interest since they make polygonal meshes nearly as flexible as higher level 3D model representations, such as piecewise polynomial based surfaces (e.g. NURBS, B-splines...). The generalization of subdivision methods from univariate data to polygonal meshes is relatively simple in case of a regular mesh but becomes less straightforward when handling irregularities. Moreover, in the linear univariate case, obtaining a smoother limit curve is achieved by increasing the size of the support of the subdivision scheme, which is not a trivial operation in the case of a surface subdivision scheme without a priori assumptions on the mesh. While many linear subdivision methods are available, the studies concerning more general non-linear methods are relatively sparse, whereas such techniques could be used to achieve better results without increasing the size support. The goal of this study is to propose and to analyze a binary non-linear interpolatory subdivision method. The proposed technique uses local polar coordinates to compute the positions of the newly inserted points. It is shown that the method converges toward continuous limit functions. The proposed univariate scheme is extended to triangular meshes, possibly with boundaries. In order to evaluate characteristics of the proposed scheme which are not proved analytically, numerical estimates to study convergence, regularity of the limit function and approximation order are studied and validated using known linear schemes of identical support. The convergence criterion is adapted to surface subdivision via a Hausdorff distance-based metric. The evolution of Gaussian and mean curvature of limit surfaces is also studied and compared against theoretical values when available. An application of surface subdivision to build a multiresolution representation of 3D models is also studied. In particular, the efficiency of such a representation for compression and in terms of rate-distortion of such a representation is shown. An alternate to the initial SPIHT-based encoding, based on the JPEG 2000 image compression standard method. This method makes possible partial decoding of the compressed model in both SNR-progressive and level-progressive ways, while adding only a minimal overhead when compared to SPIHT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear and Non-Linear Subdivision Schemes in Geometric Modeling

Subdivision schemes are efficient computational methods for the design, representation and approximation of 2D and 3D curves, and of surfaces of arbitrary topology in 3D. Subdivision schemes generate curves/surfaces from discrete data by repeated refinements. While these methods are simple to implement, their analysis is rather complicated. The first part of the talk presents the “classical” ca...

متن کامل

Non-linear subdivision using local spherical coordinates

In this paper, we present an original non-linear subdivision scheme suitable for univariate data, plane curves and discrete triangulated surfaces, while keeping the complexity acceptable. The proposed technique is compared to linear subdivision methods having an identical support. Numerical criteria are proposed to verify basic properties, such as convergence of the scheme and the regularity of...

متن کامل

A Non-Linear Subdivision Scheme for Triangle Meshes

Subdivision schemes are commonly used to obtain dense or smooth data representations from sparse discrete data. E. g., B-splines are smooth curves or surfaces that can be constructed by infinite subdivision of a polyline or polygon mesh of control points. New vertices are computed by linear combinations of the initial control points. We present a new non-linear subdivision scheme for the refine...

متن کامل

Refining Triangle Meshes by Non-linear Subdivision

Subdivision schemes are commonly used to obtain dense or smooth data representations from sparse discrete data. E. g., B-splines are smooth curves or surfaces that can be constructed by infinite subdivision of a polyline or polygon mesh of control points. New vertices are computed by linear combinations of the initial control points. We present a new non-linear subdivision scheme for the refine...

متن کامل

Approximation order of interpolatory nonlinear subdivision schemes

Linear interpolatory subdivision schemes of C smoothness have approximation order at least r + 1. The present paper extends this result to nonlinear univariate schemes which are in proximity with linear schemes in a certain specific sense. The results apply to nonlinear subdivision schemes in Lie groups and in surfaces which are obtained from linear subdivision schemes. We indicate how to exten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003